A Deep Long-Term Joint Temporal-Spectral Network for Spectrum Prediction

Spectrum prediction is a promising technique to release spectrum resources and plays an essential role in cognitive radio networks and spectrum situation generating. Traditional algorithms normally focus on one-dimensional or predict spectrum values in a slot-by-slot manner and thus cannot fully per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-02, Vol.24 (5), p.1498
Hauptverfasser: Wang, Lei, Hu, Jun, Jiang, Rundong, Chen, Zengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spectrum prediction is a promising technique to release spectrum resources and plays an essential role in cognitive radio networks and spectrum situation generating. Traditional algorithms normally focus on one-dimensional or predict spectrum values in a slot-by-slot manner and thus cannot fully perceive the spectrum states in complex environments and lack timeliness. In this paper, a deep learning-based prediction method with a simple structure is developed for temporal-spectral and multi-slot spectrum prediction simultaneously. Specifically, we first analyze and construct spectrum data suitable for the model to simultaneously achieve long-term and multi-dimensional spectrum prediction. Then, a hierarchical spectrum prediction system is developed that takes advantage of the advanced Bi-ConvLSTM and the seq2seq framework. The Bi-ConvLSTM captures time-frequency characteristics of spectrum data, and the seq2seq framework is used for long-term spectrum prediction. Furthermore, the attention mechanism is used to address the limitations of the seq2seq framework that compresses all inputs into fixed-length vectors, resulting in information loss. Finally, the experimental results have shown that the proposed model has a significant advantage over the benchmark schemes. Especially, the proposed spectrum prediction model achieves 6.15%, 0.7749, 1.0978, and 0.9628 in MAPE, MAE, RMSE, and R2, respectively, which is better than all the baseline deep learning models.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24051498