Development of a new caged intein for multi-input conditional translation of synthetic mRNA

mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-05, Vol.14 (1), p.9988-9988, Article 9988
Hauptverfasser: Yang, Tingting, Nakanishi, Hideyuki, Itaka, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:mRNA medicines can be used to express therapeutic proteins, but the production of such proteins in non-target cells has a risk of adverse effects. To accurately distinguish between therapeutic target and nontarget cells, it is desirable to utilize multiple proteins expressed in each cell as indicators. To achieve such multi-input translational regulation of mRNA medicines, in this study, we engineered Rhodothermus marinus (Rma) DnaB intein to develop “caged Rma DnaB intein” that enables conditional reconstitution of full-length translational regulator protein from split fragments. By combining the caged Rma DnaB intein, the split translational regulator protein, and target protein-binding domains, we succeeded in target protein-dependent translational repression of mRNA in human cells. In addition, the caged Rma intein showed orthogonality to the previously reported Nostoc punctiforme (Npu) DnaE-based caged intein. Finally, by combining these two orthogonal caged inteins, we developed an mRNA-based logic gate that regulates translation based on the expression of multiple intracellular proteins. This study provides important information to develop safer mRNA medicines.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-60809-w