Construction of deep learning-based disease detection model in plants

Accurately detecting disease occurrences of crops in early stage is essential for quality and yield of crops through the decision of an appropriate treatments. However, detection of disease needs specialized knowledge and long-term experiences in plant pathology. Thus, an automated system for diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-05, Vol.13 (1), p.7331-7331, Article 7331
Hauptverfasser: Jung, Minah, Song, Jong Seob, Shin, Ah-Young, Choi, Beomjo, Go, Sangjin, Kwon, Suk-Yoon, Park, Juhan, Park, Sung Goo, Kim, Yong-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurately detecting disease occurrences of crops in early stage is essential for quality and yield of crops through the decision of an appropriate treatments. However, detection of disease needs specialized knowledge and long-term experiences in plant pathology. Thus, an automated system for disease detecting in crops will play an important role in agriculture by constructing early detection system of disease. To develop this system, construction of a stepwise disease detection model using images of diseased-healthy plant pairs and a CNN algorithm consisting of five pre-trained models. The disease detection model consists of three step classification models, crop classification, disease detection, and disease classification. The ‘unknown’ is added into categories to generalize the model for wide application. In the validation test, the disease detection model classified crops and disease types with high accuracy (97.09%). The low accuracy of non-model crops was improved by adding these crops to the training dataset implicating expendability of the model. Our model has the potential to apply to smart farming of Solanaceae crops and will be widely used by adding more various crops as training dataset.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-34549-2