A Review of the Flow-Induced Noise Study for Centrifugal Pumps

Flow-induced noise is a significant concern for the design and operation of centrifugal pumps. The negative impacts of flow-induced noise on operating stability, human health and the environment have been shown in many cases. This paper presents a comprehensive review of the flow-induced noise study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-02, Vol.10 (3), p.1022
Hauptverfasser: Guo, Chang, Gao, Ming, He, Suoying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow-induced noise is a significant concern for the design and operation of centrifugal pumps. The negative impacts of flow-induced noise on operating stability, human health and the environment have been shown in many cases. This paper presents a comprehensive review of the flow-induced noise study for centrifugal pumps to synthesize the current study status. First, the generation mechanism and propagation route of flow-induced noise are discussed. Then, three kinds of study methodologies, including the theoretical study of hydrodynamic noise, numerical simulation and experimental measurement study, are summarized. Subsequently, the application of the three study methodologies to the analysis of the distribution characteristics of flow-induced noise is analyzed from aspects of the noise source identification and comparison, the frequency response analysis, the directivity characteristics of sound field and the noise changing characteristics under various operating conditions. After that, the analysis of the noise optimization design of centrifugal pumps is summarized. Finally, based on previous study results, this paper puts forward the unsolved problems and implications for future study. In conclusion, the information collected in this review paper could guide further study of the flow-induced noise of centrifugal pumps.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10031022