Control Strategy for Direct Teaching of Non-Mechanical Remote Center Motion of Surgical Assistant Robot with Force/Torque Sensor
This paper presents a control strategy that secures both precision and manipulation sensitivity of remote center motion with direct teaching for a surgical assistant robot. Remote center motion is an essential function of conventional laparoscopic surgery, and the most intuitive way a surgeon manipu...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-05, Vol.11 (9), p.4279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a control strategy that secures both precision and manipulation sensitivity of remote center motion with direct teaching for a surgical assistant robot. Remote center motion is an essential function of conventional laparoscopic surgery, and the most intuitive way a surgeon manipulates a robot is through direct teaching. The surgical assistant robot must maintain the position of the insertion port in three-dimensional space during the four-degree-of-freedom motions such as pan, tilt, spin, and forward/backward. In addition, the robot should move smoothly when controlling it with the hands during the surgery. In this study, a six-degree-of-freedom collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector keeping the position of the remote center. Instead of the bulky mechanically constrained remote center motion mechanism, a conventional collaborative robot is used to mimic the wrist movement of a scrub nurse. A force/torque sensor that is attached between the robot and end-effector estimates the surgeon’s intention. A direct teaching control strategy based on position control is applied to guarantee precise remote center position maintenance performance. A motion generation algorithm is designed to generate motion by utilizing a force/torque sensor value. The parameters of the motion generation algorithm are optimized so that the robot can be operated with uniform sensitivity in all directions. The precision of remote center motion and the torque required for direct teaching are analyzed through pan and tilt motion experiments. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11094279 |