Physiological and transcriptome analysis reveals the mechanism of Gymnocarpos przewalskii response to drought stress

Gymnocarpos przewalskii Bunge ex Maxim. (G. przewalskii) is an endangered xerophytic shrub that plays a crucial role as a source of forage in the Alxa Desert. However, there is limited understanding regarding the forage quality of G. przewalskii and its response to drought. This study aimed to evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2025-02, Vol.25 (1), p.155-19, Article 155
Hauptverfasser: Du, Chao, Ni, Xinyu, Yan, Mengjiao, Meng, Qinghan, He, Junying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gymnocarpos przewalskii Bunge ex Maxim. (G. przewalskii) is an endangered xerophytic shrub that plays a crucial role as a source of forage in the Alxa Desert. However, there is limited understanding regarding the forage quality of G. przewalskii and its response to drought. This study aimed to evaluate the forage quality of G. przewalskii and investigate the physiological and transcriptomic changes in G. przewalskii response to drought stress. The ash, fat, crude protein, lignin, crude fiber, acid detergent fiber, and neutral detergent fiber contents in G. przewalskii twigs were 10.61%, 1.85%, 5.68%, 7.08%, 21.23%, 42.16%, and 58.42%, respectively. In contrast, these ingredients in its leaves were 20.39%, 0.92%, 11.96%, 2.40%, 17.51%, 14.29% and 20.26%, respectively. Osmotic stress led to a reduction in chlorophyll levels and an increase in malondialdehyde content. Levels of hydrogen peroxide and oxygen free radicals remained relatively stable under osmotic stress. The proline content, SOD and CAT activities, and ·OH scavenging capacity were enhanced in G. przewalskii under osmotic stress. RNA-sequencing of G. przewalskii generated 44.51 Gb clean reads, which were assembled into 102,191 Unigenes and 30,809 Unigenes were successfully annotated. Comparative analysis identified 3,015 differentially expressed genes under osmotic stress. There were 2,134 and 1,739 DEGs enriched in 47 GO secondary categories and 129 KEGG pathways, respectively. 2 up-regulated DEGs were annotated to P5CS, a key enzyme in the biosynthesis of proline. 32 DEGs were annotated to various antioxidases and antioxidants. 81 DEGs were annotated to 8 plant hormone signaling pathways, in which the auxin and ABA signaling pathways exhibited dominant enrichment. 150 DEGs were annotated to 35 transcription factor families with the abundant enrichment of TF families containing WRKY, bZIP, ERF, bHLH, MYB, and NAC. High forage quality and drought stress tolerance were observed in G. przewalskii. In response to drought stress, G. przewalskii orchestrates reactive oxygen species scavenging, proline biosynthesis, and other intricate physiological processes, with substantial contributions from plant hormones and transcription factors. This study provides new insights into the forage quality and the mechanisms involved in drought adaptation of G. przewalskii, offering a foundation for its conservation and sustainable utilization.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-025-06185-7