Oxygen and Drug-Carrying Periodic Mesoporous Organosilicas for Enhanced Cell Viability under Normoxic and Hypoxic Conditions
Over the last decade, inorganic/organic hybrids have been exploited for oxygen-carrying materials and drug delivery. Its low-cost synthesis, controlled shape and size, and stability have made it a viable delivery strategy for therapeutic agents. Rutin (quercetin-3- -rutinoside) is a bioflavonoid fou...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-04, Vol.23 (8), p.4365 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the last decade, inorganic/organic hybrids have been exploited for oxygen-carrying materials and drug delivery. Its low-cost synthesis, controlled shape and size, and stability have made it a viable delivery strategy for therapeutic agents. Rutin (quercetin-3-
-rutinoside) is a bioflavonoid found in fruits and vegetables. Rutin has a variety of pharmaceutical applications, but its low water solubility reduces its stability and bioavailability. As a result, we introduce a new and stable nanosystem for loading a low-soluble drug (rutin) into oxygen-carrying periodic mesoporous organosilicas (PMO-PFCs). Over the course of 14 days, this nanosystem provided a sustained oxygen level to the cells in both normoxic and hypoxic conditions. At different pH values, the drug release (rutin) profile is also observed. Furthermore, the rutin-coated PMO-PFCs interacted with both healthy and malignant cells. The healthy cells have better cell viability on the rutin-coated oxygen-carrying PMO-PFCs, while the malignant cells have a lower cell viability. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23084365 |