In Vitro Evaluation of the Effect of Different Luting Cements and Tooth Preparation Angle on the Microleakage of Zirconia Crowns

Introduction. Discrepancy between the crown border and prepared tooth margin leads to a microleakage that eases the penetration of microorganisms and causes the dissolution of luting cement consequently. Several factors should be considered to achieve optimal fitness, including tooth preparation tap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dentistry 2021, Vol.2021, p.1-7
Hauptverfasser: Ebadian, Behnaz, Fathi, Amirhossein, Savoj, Melika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction. Discrepancy between the crown border and prepared tooth margin leads to a microleakage that eases the penetration of microorganisms and causes the dissolution of luting cement consequently. Several factors should be considered to achieve optimal fitness, including tooth preparation taper and type of cementing agent. The study aimed to determine the relation of tooth preparation taper and cement type on the microleakage of zirconia crowns. Materials and Methods. Fifty-six freshly extracted premolars without caries and restorations were selected as the study sample and divided into two groups of different tapering degrees (6 and 12 degrees). Zirconia copings were designed and fabricated by the CAD/CAM system. The samples were divided into four subgroups for cementation, and each subgroup was cemented with a different luting cement (n = 7). After 5000 thermocycles at 5°C–55°C and dye penetration, the specimens were sectioned in the mid-buccolingual direction, and a digital photograph of each section was taken under a stereomicroscope. Data were analyzed by the Kruskal–Wallis and Mann–Whitney tests (α = 0.05). Results. The results showed significant differences among the four types of luting cement in marginal permeability (PV 
ISSN:1687-8728
1687-8736
DOI:10.1155/2021/8461579