Air Flow Study around Isolated Cubical Building in the City of Athens under Various Climate Conditions

This study focuses on the airflow and pollutant dispersion around an isolated cubical building located in a warm Mediterranean climate, taking into account the local microclimate conditions (of airflow, albedo of building and soil, and air humidity) using a large-eddy simulation (LES) numerical appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-04, Vol.12 (7), p.3410
Hauptverfasser: Pavlidis, Chariton L., Palampigik, Anargyros V., Vasilopoulos, Konstantinos, Lekakis, Ioannis C., Sarris, Ioannis E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study focuses on the airflow and pollutant dispersion around an isolated cubical building located in a warm Mediterranean climate, taking into account the local microclimate conditions (of airflow, albedo of building and soil, and air humidity) using a large-eddy simulation (LES) numerical approach. To test the reliability of computations, comparisons are made against the SILSOE cube experimental data. Three different scenarios are examined: (a) Scenario A with adiabatic walls, (b) Scenario B with the same constant temperature on all the surfaces of the building, and (c) Scenario C using convective and radiative conditions imposed by the local microclimate. For the first two cases the velocity and temperature fields resulting are almost identical. In the third case, the resulting temperature on the surfaces of the building is increased by 19.5%, the center (eye) of the wake zone is raised from the ground and the maximum pollutant concentration is drastically reduced (89%).
ISSN:2076-3417
2076-3417
DOI:10.3390/app12073410