Supervised conversion from Landsat-8 images to Sentinel-2 images with deep learning

In a specific remote sensing study design, the utilization of images from a particular satellite is necessary. However, the images might be unavailable in a certain time range. Therefore, a conversion method from available remote sensing images at the time range is required. In this paper, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of remote sensing 2021-01, Vol.54 (1), p.182-208
Hauptverfasser: Isa, Sani M., Suharjito, Kusuma, Gede Putera, Cenggoro, Tjeng Wawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a specific remote sensing study design, the utilization of images from a particular satellite is necessary. However, the images might be unavailable in a certain time range. Therefore, a conversion method from available remote sensing images at the time range is required. In this paper, we proposed machine learning models that are capable to convert Landsat-8 images to Sentinel-2 images. The models are inspired by the advancement of super-resolution model based on Deep learning. The result of this study shows that the proposed models can predict Sentinel-2 images which are quantitatively and qualitatively similar to the original images.
ISSN:2279-7254
2279-7254
DOI:10.1080/22797254.2021.1875267