Ultrasmall Coordination Polymers for Alleviating ROS-Mediated Inflammatory and Realizing Neuroprotection against Parkinson's Disease

Parkinson's disease (PD) is the second most common neurodegenerative disease globally, and there is currently no effective treatment for this condition. Excessive accumulation of reactive oxygen species (ROS) and neuroinflammation are major contributors to PD pathogenesis. Herein, ultrasmall na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research (Washington) 2022, Vol.2022, p.9781323
Hauptverfasser: Cheng, Guowang, Liu, Xueliang, Liu, Yujing, Liu, Yao, Ma, Rui, Luo, Jingshan, Zhou, Xinyi, Wu, Zhenfeng, Liu, Zhuang, Chen, Tongkai, Yang, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson's disease (PD) is the second most common neurodegenerative disease globally, and there is currently no effective treatment for this condition. Excessive accumulation of reactive oxygen species (ROS) and neuroinflammation are major contributors to PD pathogenesis. Herein, ultrasmall nanoscale coordination polymers (NCPs) coordinated by ferric ions and natural product curcumin (Cur) were exploited, showing efficient neuroprotection by scavenging excessive radicals and suppressing neuroinflammation. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse PD model, such ultrasmall Fe-Cur NCPs with prolonged blood circulation and BBB traversing capability could effectively alleviate oxidative stress, mitochondrial dysfunction, and inflammatory condition in the midbrain and striatum to reduce PD symptoms. Thus, this study puts forth a unique type of therapeutics-based NCPs that could be used for safe and efficient treatment of PD with potential in clinical translation.
ISSN:2639-5274
2639-5274
DOI:10.34133/2022/9781323