Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S0). The OCS gas at 3.7 to 501 mbar was irradiated with or without a N2 bath gas using a 150 W Xe arc lamp. Sulfur isotope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2011-10, Vol.11 (19), p.10283-10292
Hauptverfasser: Lin, Y., Sim, M. S., Ono, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S0). The OCS gas at 3.7 to 501 mbar was irradiated with or without a N2 bath gas using a 150 W Xe arc lamp. Sulfur isotope ratios for the product S0 and residual OCS were analyzed by an isotope ratio mass-spectrometer with SF6 as the analyte gas. The isotope fractionation after correction for the reservoir effects is −6.8‰ for the ratio 34S/32S, where product S0 is depleted in heavy isotopes. The magnitude of the overall isotope effect is not sensitive to the addition of N2 but increases to −9.5‰ when radiation of λ > 285 nm is used. The measured isotope effect reflects that of photolysis as well as the subsequent sulfur abstraction (from OCS) reaction. The magnitude of isotope effects for the abstraction reaction is estimated by transition state theory to be between −18.9 and −3.1‰ for 34S which gives the photolysis isotope effect as −10.5 to +5.3‰. The observed triple isotope coefficients are ln(δ34S + 1)/ln(δ34S + 1) = 0.534 ± 0.005 and ln(δ36S + 1)/ln(δ34S + 1) = 1.980 ± 0.021. These values differ from canonical values for mass-dependent fractionation of 0.515 and 1.90, respectively. The result demonstrates that the OCS photolysis does not produce large isotope effects of more than about 10‰ for 34S/32S, and can be the major source of background stratospheric sulfate aerosol (SSA) during volcanic quiescence.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-11-10283-2011