Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation

The cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mSystems 2021-08, Vol.6 (4), p.e0021521-e0021521
Hauptverfasser: Birk, Marlène S, Ahmed-Begrich, Rina, Tran, Stefan, Elsholz, Alexander K W, Frese, Christian K, Charpentier, Emmanuelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemical isobaric peptide labeling to simultaneously determine the time-resolved protein decay and synthesis in an intracellular human pathogen. We showcase this method by investigating the Listeria monocytogenes proteome in the presence and absence of the AAA+ chaperone protein ClpC. ClpC associates with the peptidase ClpP to form an ATP-dependent protease complex and has been shown to play a role in virulence development in L. monocytogenes. However, the mechanism by which ClpC is involved in the survival and proliferation of intracellular L. monocytogenes remains elusive. Employing this new method, we observed extensive proteome remodeling in L. monocytogenes upon interaction with the host, supporting the hypothesis that ClpC-dependent protein degradation is required to initiate bacterial adaptation mechanisms. We identified more than 100 putative ClpC target proteins through their stabilization in a deletion strain. Beyond the identification of direct targets, we also observed indirect effects of the deletion on the protein abundance in diverse cellular and metabolic pathways, such as iron acquisition and flagellar assembly. Overall, our data highlight the crucial role of ClpC for L. monocytogenes adaptation to the host environment through proteome remodeling. Survival and proliferation of pathogenic bacteria inside the host depend on their ability to adapt to the changing environment. Profiling the underlying changes on the bacterial proteome level during the infection process is important to gain a better understanding of the pathogenesis and the host-dependent adaptation processes. The cellular protein abundance is governed by the interplay between protein synthesis and decay. The direct readout of these events during infection can be accomplished using pulsed stable-isotope labeling by amino acids in cell culture (SILAC). Combining this approach with tandem-mass-tag (TMT) labeling enabled multiplexed and time-resolved bacterial proteome quantification during infection. Here, we applied this integrated approach to investigate protein turnover during the temporal progression of adaptation of the human pathogen L. monocytogenes to its host on a system-wide scale. Our
ISSN:2379-5077
2379-5077
DOI:10.1128/mSystems.00215-21