Synthesis of a donor–acceptor heterodimer via trifunctional completive self-sorting
Selective self-assembly of heterodimers consisting of two non-identical subunits plays important roles in Nature but is rarely encountered in synthetic supramolecular systems. Here we show that photocleavage of a donor–acceptor porphyrin complex produces an heterodimeric structure with surprising se...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-06, Vol.13 (1), p.3204-3204, Article 3204 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selective self-assembly of heterodimers consisting of two non-identical subunits plays important roles in Nature but is rarely encountered in synthetic supramolecular systems. Here we show that photocleavage of a donor–acceptor porphyrin complex produces an heterodimeric structure with surprising selectivity. The system forms via a multi-step sequence that starts with an oxidative ring opening, which produces an equimolar mixture of two isomeric degradation products (zinc(II) bilatrien-
abc
-ones, BTOs). These two isomers are susceptible to water addition, yielding the corresponding zinc(II) 15-hydroxybiladien-
ab
-ones (HBDOs). However, in the photocleavage experiment only one HBDO isomer is formed, and it quantitatively combines with the remaining BTO isomer. The resulting heterodimer is stabilized by a Zn–O coordination bond and extended dispersion interactions between the overlapping π-surfaces of the monomers. The observed selectivity can be seen as a case of completive self-sorting, simultaneously controlled by three types of complementary interactions.
The preparation of heterodimeric structures via self-assembly processes is challenging. Here, the authors report the photooxidation of a donor–acceptor metalloporphyrin, which enables a self-sorting process that yields an heterodimer quantitatively. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30859-7 |