Effects of iRoot SP on osteogenic differentiation of human stem cells from apical papilla
Background Research shows that nano-bioceramics can modulate the differentiation of dental stem cells. The novel ready-to-use calcium-silicate-based root-canal sealer iRoot SP is widely used in root filling. Accordingly, the aim of this study was to evaluate the effects of iRoot SP on proliferation...
Gespeichert in:
Veröffentlicht in: | BMC oral health 2021-08, Vol.21 (1), p.1-407, Article 407 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Research shows that nano-bioceramics can modulate the differentiation of dental stem cells. The novel ready-to-use calcium-silicate-based root-canal sealer iRoot SP is widely used in root filling. Accordingly, the aim of this study was to evaluate the effects of iRoot SP on proliferation and osteogenic differentiation in human stem cells from the apical papilla (hSCAPs). Methods hSCAPs were isolated and characterized in vitro, then cultured with various concentrations of iRoot SP extract. Cell proliferation was assessed by CCK-8 assay, and scratch-wound-healing assays were performed to evaluate cell-migration capacity. hSCAPs were then cultured in osteogenic medium supplemented with iRoot SP extracts. Alkaline phosphatase (ALP) activity assay was used to evaluate ALP enzyme levels. Alizarin red staining and cetylpyridinium chloride (CPC) assays were performed to assess calcified-nodule formation and matrix-calcium accumulation of hSCAPs. The mRNA and protein expression levels of the osteogenic markers OCN, OSX, Runx2, and DSPP were determined by qRT-PCR and Western blotting. The data were analyzed using one-way ANOVA and LSD-t tests. Results iRoot SP at low concentrations (2, 0.2, and 0.02 mg/mL) is nontoxic to hSCAPs. iRoot SP at concentrations of 0.02 and 0.2 mg/mL significantly increases cell-migration capacity. In terms of osteogenic differentiation, 0.2 mg/mL iRoot SP promotes intracellular ALP activity and the formation of mineralized nodules. Moreover, the expression of osteogenic markers at the mRNA and protein levels are upregulated by iRoot SP. Conclusion iRoot SP is an effective filling material for periapical bone regeneration. Keywords: Nano-bioceramics, iRoot SP, Human stem cells from apical papilla, Osteogenic differentiation |
---|---|
ISSN: | 1472-6831 1472-6831 |
DOI: | 10.1186/s12903-021-01769-9 |