Time-optimal control of a solid-state spin amidst dynamical quantum wind

Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2024-11, Vol.10 (1), p.108-8, Article 108
Hauptverfasser: Dong, Yang, Jiang, Wang, Gao, Xue-Dong, Yu, Cui, Liu, Yong, Zhang, Shao-Chun, Chen, Xiang-Dong, Moreira, Ibério de P. R., Bofill, Josep Maria, Sentís, Gael, Ramos, Ramón, Albareda, Guillermo, Guo, Guang-Can, Sun, Fang-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or potential, either owing to the inevitable influence of the environment or as a sought-after effect for enhanced coherence. The challenge then lies in finding the time-optimal approach to navigate quantum systems amidst dynamical ambient Hamiltonians, a pursuit that has proven elusive thus far. We showcase the implementation of arbitrary quantum state transformations and a universal set of single-qubit gates under a background Landau-Zener Hamiltonian. Leveraging the favorable coherence properties of timedomain Rabi oscillations, we achieve velocities surpassing the Mandelstam-Tamm quantum speed limit and significantly lower energy costs than those incurred by conventional quantum control techniques. These findings highlight a promising pathway to expedite and economize high-fidelity quantum operations.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-024-00912-y