A note on Engel elements in the first Grigorchuk group
Let $Gamma$ be the first Grigorchuk group. According to a result of Bar-thol-di, the only left Engel elements of $Gamma$ are the involutions. This implies that the set of left Engel elements of $Gamma$ is not a subgroup. The natural question arises whether this is also the case for the sets...
Gespeichert in:
Veröffentlicht in: | International journal of group theory 2019-09, Vol.8 (3), p.9-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $Gamma$ be the first Grigorchuk group. According to a result of Bar-thol-di, the only left Engel elements of $Gamma$ are the involutions. This implies that the set of left Engel elements of $Gamma$ is not a subgroup. The natural question arises whether this is also the case for the sets of bounded left Engel elements, right Engel elements and bounded right Engel elements of $Gamma$. Motivated by this, we prove that these three subsets of $Gamma$ coincide with the identity subgroup. |
---|---|
ISSN: | 2251-7650 2251-7669 |
DOI: | 10.22108/ijgt.2018.109911.1470 |