A note on Engel elements in the first Grigorchuk group

Let $Gamma$ be the first Grigorchuk group‎. ‎According to a result of Bar-thol-di‎, ‎the only left Engel elements of $Gamma$ are the involutions‎. ‎This implies that the set of left Engel elements of $Gamma$ is not a subgroup‎. ‎The natural question arises whether this is also the case for the sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of group theory 2019-09, Vol.8 (3), p.9-14
Hauptverfasser: Marialaura Noce, Antonio Tortora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $Gamma$ be the first Grigorchuk group‎. ‎According to a result of Bar-thol-di‎, ‎the only left Engel elements of $Gamma$ are the involutions‎. ‎This implies that the set of left Engel elements of $Gamma$ is not a subgroup‎. ‎The natural question arises whether this is also the case for the sets of bounded left Engel elements‎, ‎right Engel elements and bounded right Engel elements of $Gamma$‎. ‎Motivated by this‎, ‎we prove that these three subsets of $Gamma$ coincide with the identity subgroup‎.
ISSN:2251-7650
2251-7669
DOI:10.22108/ijgt.2018.109911.1470