Confining H3PO4 network in covalent organic frameworks enables proton super flow

Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-04, Vol.11 (1), p.1981-1981, Article 1981
Hauptverfasser: Tao, Shanshan, Zhai, Lipeng, Dinga Wonanke, A. D., Addicoat, Matthew A., Jiang, Qiuhong, Jiang, Donglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-bonded (C=N) dually stable covalent organic framework to construct dense yet aligned one-dimensional nanochannels, in which the linkers induce hyperconjugation and inductive effects to stabilize the pore structure and the nitrogen sites on pore walls confine and stabilize the H 3 PO 4 network in the channels via hydrogen-bonding interactions. The resulting materials enable proton super flow to enhance rates by 2–8 orders of magnitude compared to other analogues. Temperature profile and molecular dynamics reveal proton hopping at low activation and reorganization energies with greatly enhanced mobility. Development of porous proton-transporting materials combining stability and high performance has remained a challenge. Here, the authors report a stable covalent organic framework with excellent proton conductivity in which nitrogen sites on pore walls confine and stabilize a H3PO4 network in the channels via hydrogen-bonding interactions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15918-1