Detection of Aflatoxins B1 in Maize Grains Using Fluorescence Resonance Energy Transfer
Aflatoxins are secondary metabolites of Aspergillus flavus and Aspergillus parasiticus. These fungal species are the most dangerous and common toxin group causing food contamination. Aflatoxin has high toxicity and can cause cancer to humans and animals. The quantitative detection of aflatoxin in fo...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-03, Vol.10 (5), p.1578 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aflatoxins are secondary metabolites of Aspergillus flavus and Aspergillus parasiticus. These fungal species are the most dangerous and common toxin group causing food contamination. Aflatoxin has high toxicity and can cause cancer to humans and animals. The quantitative detection of aflatoxin in food, therefore, plays a very important role. However, in practice, due to low concentrations, aflatoxin detection analysis methods need to be highly sensitive and simple to apply. In this report, the fluorescence resonance energy transfer method (FRET) adopts the donor–acceptor interaction of aflatoxin B1. The CdSe/ZnS quantum dot detection of aflatoxin B1 will be presented wherein the aflatoxin B1 concentration can be determined from the changes in fluorescence lifetime or fluorescence intensity. A fluorescence lifetime calibration curve versus aflatoxin B1 concentrations was established. Test results of aflatoxin B1 determination in maize in Vietnam by FRET method are consistent with the results of aflatoxin B1 determination by HPLC based on ppm concentration. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10051578 |