Phenolic-Based Discrimination between Non-Symptomatic and Symptomatic Leaves of Aesculus hippocastanum Infested by Cameraria ohridella and Erysiphe flexuosa

The herbivore Cameraria ohridella (kingdom Animalia) and the pathogen Erysiphe flexuosa (kingdom Fungi) are considered pests and biotic stressors of Aesculus hippocastanum (chestnut trees). The impact of both pests on the accumulation of secondary metabolites in chestnut leaves was investigated. Spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-09, Vol.24 (18), p.14071
Hauptverfasser: Hanaka, Agnieszka, Dresler, Sławomir, Mułenko, Wiesław, Wójciak, Magdalena, Sowa, Ireneusz, Sawic, Magdalena, Stanisławek, Katarzyna, Strzemski, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The herbivore Cameraria ohridella (kingdom Animalia) and the pathogen Erysiphe flexuosa (kingdom Fungi) are considered pests and biotic stressors of Aesculus hippocastanum (chestnut trees). The impact of both pests on the accumulation of secondary metabolites in chestnut leaves was investigated. Specifically, the interactive effect of both pests on metabolite accumulation and their potential role in enhancing the resistance of chestnut trees to biological stress was the focus of this study. Aesculus hippocastanum leaves with varying degrees of Cameraria ohridella infestation and Erysiphe flexuosa infection were used in this research. Leaf samples were collected during the plant vegetative growth phase and evaluated for pest infection and secondary metabolite content. Eight main polyphenols were identified in the leaves: (1) neochlorogenic acid, (2) (−)-epicatechin, (3) procyanidin trimer A-type, (4) procyanidin tetramer A-type, (5) quercetin-3-O-arabinoside, (6) quercetin-3-O-rhamnoside, (7) kaempferol-3-O-arabinoside, and (8) kaempferol-3-O-rhamnoside. It was found that the accumulation of metabolites, primarily those derived from epicatechin and quercetin, during the initial vegetation phase (up to 11.05 or 09.05), strongly depended on the later degree of pest infection. The differences observed in the metabolite dynamics in the chestnut leaves, depending on the extent of infection, indicate the development of a metabolic response mechanism in chestnut trees to biological stress.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241814071