An Overview of Model-Free Adaptive Control for the Wheeled Mobile Robot
Control technology for wheeled mobile robots is one of the core focuses in the current field of robotics research. Within this domain, model-free adaptive control (MFAC) methods, with their advanced data-driven strategies, have garnered widespread attention. The unique characteristic of these method...
Gespeichert in:
Veröffentlicht in: | World Electric Vehicle Journal 2024-09, Vol.15 (9), p.396 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Control technology for wheeled mobile robots is one of the core focuses in the current field of robotics research. Within this domain, model-free adaptive control (MFAC) methods, with their advanced data-driven strategies, have garnered widespread attention. The unique characteristic of these methods is their ability to operate without relying on prior model information of the control system, which showcases their exceptional capability in ensuring closed-loop system stability. This paper extensively details three dynamic linearization techniques of MFAC: compact form dynamic linearization, partial form dynamic linearization and full form dynamic linearization. These techniques lay a solid theoretical foundation for MFAC. Subsequently, the article delves into some advanced MFAC schemes, such as dynamic event-triggered MFAC and iterative learning MFAC. These schemes further enhance the efficiency and intelligence level of control systems. In the concluding section, the paper briefly discusses the future development potential and possible research directions of MFAC, aiming to offer references and insights for future innovations in control technology for wheeled mobile robots. |
---|---|
ISSN: | 2032-6653 2032-6653 |
DOI: | 10.3390/wevj15090396 |