High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics

Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-05, Vol.9 (1), p.1750-14, Article 1750
Hauptverfasser: Mager, Thomas, Lopez de la Morena, David, Senn, Verena, Schlotte, Johannes, D´Errico, Anna, Feldbauer, Katrin, Wrobel, Christian, Jung, Sangyong, Bodensiek, Kai, Rankovic, Vladan, Browne, Lorcan, Huet, Antoine, Jüttner, Josephine, Wood, Phillip G., Letzkus, Johannes J., Moser, Tobias, Bamberg, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration. Optogenetic applications would benefit from channelrhodopsins (ChRs) with faster photostimulation, increased tissue transparency and lower phototoxicity. Here, the authors develop fast red-shifted ChR variants and show the abilities for temporal precise spiking of cerebral interneurons and restoring auditory activity in deaf mice.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04146-3