Learning-Free Text Line Segmentation for Historical Handwritten Documents

We present a learning-free method for text line segmentation of historical handwritten document images. This method relies on automatic scale selection together with second derivative of anisotropic Gaussian filters to detect the blob lines that strike through the text lines. Detected blob lines gui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-11, Vol.10 (22), p.8276
Hauptverfasser: Kurar Barakat, Berat, Cohen, Rafi, Droby, Ahmad, Rabaev, Irina, El-Sana, Jihad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a learning-free method for text line segmentation of historical handwritten document images. This method relies on automatic scale selection together with second derivative of anisotropic Gaussian filters to detect the blob lines that strike through the text lines. Detected blob lines guide an energy minimization procedure to extract the text lines. Historical handwritten documents contain noise, heterogeneous text line heights, skews and touching characters among text lines. Automatic scale selection allows for automatic adaption to the heterogeneous nature of handwritten text lines in case the character height range is correctly estimated. In the extraction phase, the method can accurately split the touching characters among the text lines. We provide results investigating various settings and compare the model with recent learning-free and learning-based methods on the cBAD competition dataset.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10228276