Confidence-Guided Frame Skipping to Enhance Object Tracking Speed

Object tracking is a challenging task in computer vision. While simple tracking methods offer fast speeds, they often fail to track targets. To address this issue, traditional methods typically rely on complex algorithms. This study presents a novel approach to enhance object tracking speed via conf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8120
1. Verfasser: Lee, Yun Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Object tracking is a challenging task in computer vision. While simple tracking methods offer fast speeds, they often fail to track targets. To address this issue, traditional methods typically rely on complex algorithms. This study presents a novel approach to enhance object tracking speed via confidence-guided frame skipping. The proposed method is strategically designed to complement existing methods. Initially, lightweight tracking is used to track a target. Only in scenarios where it fails to track is an existing, robust but complex algorithm used. The contribution of this study lies in the proposed confidence assessment of the lightweight tracking's results. The proposed method determines the need for intervention by the robust algorithm based on the predicted confidence level. This two-tiered approach significantly enhances tracking speed by leveraging the lightweight method for straightforward situations and the robust algorithm for challenging scenarios. Experimental results demonstrate the effectiveness of the proposed approach in enhancing tracking speed.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24248120