Anti-periodic behavior for quaternion-valued delayed cellular neural networks

In this manuscript, quaternion-valued delayed cellular neural networks are studied. Applying the continuation theorem of coincidence degree theory, inequality techniques and a Lyapunov function approach, a new sufficient condition that guarantees the existence and exponential stability of anti-perio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2021-03, Vol.2021 (1), p.1-16, Article 170
Hauptverfasser: Duan, Zhenhua, Xu, Changjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this manuscript, quaternion-valued delayed cellular neural networks are studied. Applying the continuation theorem of coincidence degree theory, inequality techniques and a Lyapunov function approach, a new sufficient condition that guarantees the existence and exponential stability of anti-periodic solutions for quaternion-valued delayed cellular neural networks is presented. The obtained results supplement some earlier publications that deal with the anti-periodic solutions of quaternion-valued neural networks with distributed delay or impulse or state-dependent delay or inertial term. Computer simulations are displayed to check the derived analytical results.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03327-7