sp2/sp3 Hybridized Carbon as an Anode with Extra Li-Ion Storage Capacity: Construction and Origin
Doping in carbon anodes can introduce active sites, usually leading to extra capacity in Li-ion batteries (LIBs), but the underlying reasons have not been uncovered deeply. Herein, the dodecahedral carbon framework (N-DF) with a low nitrogen content (3.06 wt %) is fabricated as the anode material fo...
Gespeichert in:
Veröffentlicht in: | ACS central science 2020-08, Vol.6 (8), p.1451-1459 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doping in carbon anodes can introduce active sites, usually leading to extra capacity in Li-ion batteries (LIBs), but the underlying reasons have not been uncovered deeply. Herein, the dodecahedral carbon framework (N-DF) with a low nitrogen content (3.06 wt %) is fabricated as the anode material for LIBs, which shows an extra value of 298 mA h g–1 during 250 cycles at 0.1 A g–1. Various characterizations and theoretical calculations demonstrate that the essence of the extra capacity mainly stems from non-coplanar sp2/sp3 hybridized orbital controlling non-Euclidean geometrical structure, which acts as new Li-ion active sites toward the excess Li+ adsorption. The electrochemical kinetics and in situ transmission electron microscope further reveal that the positive and negative curvature architectures not only provide supernumerary Li+ storage sites on the surface but also hold an enhanced (002) spacing for fast Li+ transport. The sp2/sp3 hybridized orbital design concept will help to develop advanced electrode materials. |
---|---|
ISSN: | 2374-7943 2374-7951 |
DOI: | 10.1021/acscentsci.0c00593 |