New method based on neuro-fuzzy system and PSO algorithm for estimating phase equilibria properties

The subject of this work is to propose a new method based on the ANFIS system and PSO algorithm to conceive a model for estimating the solubility of solid drugs in supercritical CO2 (sc-CO2). The high nonlinear process was modeled by the neuro-fuzzy approach (NFS). The PSO algorithm was used for two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Industry & Chemical Engineering Quarterly 2022-01, Vol.28 (2), p.141-150
Hauptverfasser: Hadj, Abdallah, Laidi, Maamar, Hanini, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The subject of this work is to propose a new method based on the ANFIS system and PSO algorithm to conceive a model for estimating the solubility of solid drugs in supercritical CO2 (sc-CO2). The high nonlinear process was modeled by the neuro-fuzzy approach (NFS). The PSO algorithm was used for two purposes: replacing the standard backpropagation in training the NFS and optimizing the process. The validation strategy has been carried out using a linear regression analysis of the predicted versus experimental outputs. The ANFIS approach is compared to the ANN in terms of accuracy. Statistical analysis of the predictability of the optimized model trained with a PSO algorithm (ANFIS-PSO) shows a better agreement with the reference data than the ANN method. Furthermore, the comparison in terms of the AARD deviation (%) between the predicted results, the results predicted by the density-based models, and a set of equations of state demonstrates that the ANFIS-PSO model correlates far better with the solubility of the solid drugs in scCO2. A control strategy was also developed for the first time in the field of phase equilibrium by using the neuro-fuzzy inverse approach (ANFISi) to estimate pure component properties from the solubility data without passing through the GCM methods.
ISSN:1451-9372
2217-7434
DOI:10.2298/CICEQ201104024A