Polydopamine-assisted aptamer-carrying tetrahedral DNA microelectrode sensor for ultrasensitive electrochemical detection of exosomes
Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological s...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2024-02, Vol.22 (1), p.55-55, Article 55 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological status, because they carry a large number of biological macromolecules derived from parental tumors. The ultrasensitive quantification of trace amounts of cancerous exosomes is highly valuable for non-invasive early cancer diagnosis, yet it remains challenging. Herein, we developed an aptamer-carrying tetrahedral DNA (Apt-TDNA) microelectrode sensor, assisted by a polydopamine (PDA) coating with semiconducting properties, for the ultrasensitive electrochemical detection of cancer-derived exosomes.
The stable rigid structure and orientation of Apt-TDNA ensured efficient capture of suspended exosomes. Without PDA coating signal amplification strategy, the sensor has a linear working range of 10
-10
particles mL
, with LOD of ~ 69 exosomes and ~ 42 exosomes for EIS and DPV, respectively. With PDA coating, the electrochemical signal of the microelectrode is further amplified, achieving single particle level sensitivity (~ 14 exosomes by EIS and ~ 6 exosomes by DPV).
The proposed PDA-assisted Apt-TDNA microelectrode sensor, which integrates efficient exosome capture, sensitive electrochemical signal feedback with PDA coating signal amplification, provides a new avenue for the development of simple and sensitive electrochemical sensing techniques in non-invasive cancer diagnosis and monitoring treatment response. |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-024-02318-6 |