SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer

Fluorouracil-based chemotherapy responses in colorectal cancer (CRC) patients vary widely, highlighting the role of pharmacogenomics in developing better predictive models. We analyzed 379 CRC patients receiving fluorouracil-based chemotherapy, collecting data on fluorouracil metabolism-related SNPs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-11, Vol.14 (1), p.27700-14, Article 27700
Hauptverfasser: Li, Jiyifan, Zhang, Wenxin, Chen, Lu, Mao, Xiang, Wang, Xinhai, Liu, Jiafeng, Huang, Yuxin, Qi, Huijie, Chen, Li, Shi, Huanying, Chen, Bicui, Zhong, Mingkang, Li, Qunyi, Wang, Tianxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorouracil-based chemotherapy responses in colorectal cancer (CRC) patients vary widely, highlighting the role of pharmacogenomics in developing better predictive models. We analyzed 379 CRC patients receiving fluorouracil-based chemotherapy, collecting data on fluorouracil metabolism-related SNPs ( TYMS , MTHFR , DPYD , RRM1 ), blood inflammatory markers, and clinical status. Six machine learning models—K-nearest neighbors, support vector machine, gradient boosting decision trees (GBDT), eXtreme Gradient Boosting (XGBoost), LightGBM, and random forest—were compared against multivariate logistic regression and a deep learning model (i.e., multilayer perceptron, MLP). Feature importance analysis highlighted seven predictors: histological grade, N and M staging, monocyte count, platelet-to-lymphocyte ratio, MTHFR rs1801131, and RRM1 rs11030918. In a five-fold cross-validation, XGBoost and GBDT exhibited superior performance, with Area Under Curve (AUC) of 0.88 ± 0.02. XGBoost excelled in identifying favorable prognosis (recall = 0.939). GBDT demonstrated balance in recognizing both categories, with a recall for favorable prognosis of 0.908 and a precision for unfavorable prognosis of 0.863. MLP had a similar AUC (0.87) with high precision for favorable prognosis (recall = 0.946). In external validation, XGBoost model achieved an accuracy of 0.79. An online prognostic tool based on XGBoost was developed, integrating metabolism-related SNPs and inflammatory markers, enhancing CRC treatment precision and supporting tailored chemotherapy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-79036-4