Two-loop kite master integral for a correlator of two composite vertices

A bstract We consider the most general two-loop massless correlator I ( n 1 , n 2 , n 3 , n 4 , n 5 ; x, y ; D ) of two composite vertices with the Bjorken fractions x and y for arbitrary indices { n i } and space-time dimension D ; this correlator is represented by a “kite” diagram. The correlator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2019-01, Vol.2019 (1), p.1-27, Article 202
Hauptverfasser: Mikhailov, S. V., Volchanskiy, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We consider the most general two-loop massless correlator I ( n 1 , n 2 , n 3 , n 4 , n 5 ; x, y ; D ) of two composite vertices with the Bjorken fractions x and y for arbitrary indices { n i } and space-time dimension D ; this correlator is represented by a “kite” diagram. The correlator I ({ n i }; x, y ; D ) is the generating function for any scalar Feynman integrals related to this kind of diagrams. We calculate I ({ n i }; x, y ; D ) and its Mellin moments in a direct way by evaluating hypergeometric integrals in the α representation. The result for I ({ n i }; x, y ; D ) is given in terms of a double hypergeometric series — the Kampé de Férriet function. In some particular but still quite general cases it reduces to a sum of generalized hypergeometric functions 3 F 2 . The Mellin moments can be expressed through generalized Lauricella functions, which reduce to the Kampé de Férriet functions in several physically interesting situations. A number of Feynman integrals involved and relations for them are obtained.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2019)202