Two-loop kite master integral for a correlator of two composite vertices
A bstract We consider the most general two-loop massless correlator I ( n 1 , n 2 , n 3 , n 4 , n 5 ; x, y ; D ) of two composite vertices with the Bjorken fractions x and y for arbitrary indices { n i } and space-time dimension D ; this correlator is represented by a “kite” diagram. The correlator...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2019-01, Vol.2019 (1), p.1-27, Article 202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We consider the most general two-loop massless correlator
I
(
n
1
, n
2
, n
3
, n
4
, n
5
;
x, y
;
D
) of two composite vertices with the Bjorken fractions
x
and
y
for arbitrary indices {
n
i
} and space-time dimension
D
; this correlator is represented by a “kite” diagram. The correlator
I
({
n
i
};
x, y
;
D
) is the generating function for any scalar Feynman integrals related to this kind of diagrams. We calculate
I
({
n
i
};
x, y
;
D
) and its Mellin moments in a direct way by evaluating hypergeometric integrals in the α representation. The result for
I
({
n
i
};
x, y
;
D
) is given in terms of a double hypergeometric series — the Kampé de Férriet function. In some particular but still quite general cases it reduces to a sum of generalized hypergeometric functions
3
F
2
. The Mellin moments can be expressed through generalized Lauricella functions, which reduce to the Kampé de Férriet functions in several physically interesting situations. A number of Feynman integrals involved and relations for them are obtained. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2019)202 |