Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research

Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2023-07, Vol.12 (8), p.1530
Hauptverfasser: Volkov, Vladimir, Lobanov, Anton, Voronkov, Mikhail, Baygildiev, Timur, Misin, Vyacheslav, Tsivileva, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of developing reliable methods for analyzing the superoxide inhibition activity of various objects is very urgent. In this work, a kinetic model of epinephrine autoxidation in an alkaline medium in the presence of antioxidants of plant origin is proposed. The participation of chain reactions with long oxidation chains in this process is revealed. The limiting stage of the process is a one-electron reduction of oxygen by the anionic forms of the phenolic hydroxyls of epinephrine. The appearance of the absorption maximum at a wavelength of 347 nm during epinephrine autoxidation is associated with adrenolutin formation, which is confirmed by HPLC/UV/MS. No adduct formation between phenolic antioxidants and epinephrine oxidation products was found. The complex U-shaped character of epinephrine autoxidation rate dependence on the content of antioxidants in the reaction system was shown. The study of the kinetics of epinephrine autoxidation in the presence of an individual phenolic plant superoxide inhibitor, chlorogenic acid, was carried out for the first time. The inhibitory effect of yarrow, chamomile, and bur beggar-ticks plant extracts in the adrenaline system was examined.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12081530