Multiplicity Results of Solutions to the Fractional p-Laplacian Problems of the Kirchhoff–Schrödinger–Hardy Type

This paper is devoted to establishing multiplicity results of nontrivial weak solutions to the fractional p-Laplacian equations of the Kirchhoff–Schrödinger type with Hardy potentials. The main features of the paper are the appearance of the Hardy potential and nonlocal Kirchhoff coefficients, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2025-01, Vol.13 (1), p.47
1. Verfasser: Kim, Yun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to establishing multiplicity results of nontrivial weak solutions to the fractional p-Laplacian equations of the Kirchhoff–Schrödinger type with Hardy potentials. The main features of the paper are the appearance of the Hardy potential and nonlocal Kirchhoff coefficients, and the absence of the compactness condition of the Palais–Smale type. To demonstrate the multiplicity results, we exploit the fountain theorem and the dual fountain theorem as the main tools, respectively.
ISSN:2227-7390
2227-7390
DOI:10.3390/math13010047