Experimental Investigation of Mooring Performance and Energy-Harvesting Performance of Eccentric Rotor Wave Energy Converter
To obtain the optimal mooring mode and the best-matching wave condition of an eccentric rotor wave energy converter (ERWEC), a physical model of the ERWEC was developed. Ten mooring modes and eight wave conditions were set up. Several experiments were carried out to analyze the influence of mooring...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2022-11, Vol.10 (11), p.1774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To obtain the optimal mooring mode and the best-matching wave condition of an eccentric rotor wave energy converter (ERWEC), a physical model of the ERWEC was developed. Ten mooring modes and eight wave conditions were set up. Several experiments were carried out to analyze the influence of mooring modes and wave conditions on the mooring and energy-harvesting performances of the ERWEC. The results showed that the mooring and energy-harvesting performances changed significantly for the same mooring mode under various regular wave conditions, but the opposite situation was found under irregular wave conditions. The wave-facing direction of the buoy was a critical factor affecting the mooring and energy-harvesting performances, while the number of anchor lines had little effect on them. In addition, a method to evaluate the motion response of the buoy based on the number of effective excitations and a method to evaluate the comprehensive performance based on the cloud chart are proposed. The mooring mode and wave condition combination that obtained the optimal mooring and energy-harvesting performances for the ERWEC was determined. This paper provides a novel perspective on how to balance the efficiency and reliability of wave energy converters. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse10111774 |