Development of web-based dynamic nomogram to predict survival in patients with gastric cancer: a population-based study
Gastric cancer (GC) is the fifth most frequent malignancy worldwide and the third leading cause of cancer-associated mortality. The study’s goal was to construct a predictive model and nomograms to predict the survival of GC patients. This historical cohort study assessed 733 patients who underwent...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-03, Vol.12 (1), p.4580-9, Article 4580 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gastric cancer (GC) is the fifth most frequent malignancy worldwide and the third leading cause of cancer-associated mortality. The study’s goal was to construct a predictive model and nomograms to predict the survival of GC patients. This historical cohort study assessed 733 patients who underwent treatments for GC. The univariate and multivariable Cox proportional hazard (CPH) survival analyses were applied to identify the factors related to overall survival (OS). A dynamic nomogram was developed as a graphical representation of the CPH regression model. The internal validation of the nomogram was evaluated by Harrell’s concordance index (C-index) and time-dependent AUC. The results of the multivariable Cox model revealed that the age of patients, body mass index (BMI), grade of tumor, and depth of tumor elevate the mortality hazard of gastric cancer patients (P |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-08465-w |