A Novel Variable Step Size Incremental Conductance Method with an Adaptive Scaling Factor

In this paper, a novel variable step size (VSS) incremental conductance (INC) method with an adaptive scaling factor is proposed. The proposed technique utilizes the model-based state estimation method to calculate the irradiance level and then determine an appropriate scaling factor accordingly to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-08, Vol.10 (15), p.5214
Hauptverfasser: Chuang, Man-Tsai, Liu, Yi-Hua, Ye, Song-Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel variable step size (VSS) incremental conductance (INC) method with an adaptive scaling factor is proposed. The proposed technique utilizes the model-based state estimation method to calculate the irradiance level and then determine an appropriate scaling factor accordingly to enhance the capability of maximum power point tracking (MPPT). The fast and accurate tracking can be achieved by the presented method without the need for extra irradiance and temperature sensors. Only the voltage-and-current sets of any two operating points on the characteristic curve are needed to estimate the irradiance level. By choosing a proper scaling factor, the performance of the conventional VSS INC method can be improved. To validate the studied algorithm, a 600 W prototyping circuit is constructed and the performances are demonstrated experimentally. Compared to conventional VSS INC methods under the tested conditions, the tracking time is shortened by 31.8%. The tracking accuracy is also improved by 2.1% and 3.5%, respectively. Besides, tracking energy loss is reduced by 43.9% and 29.9%, respectively.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10155214