Simulation of Multi-Species Plant Communities in Perturbed and Nutrient-Limited Grasslands: Development of the Growth Model ModVege

Simulating the dynamics of plant species or types in grassland communities remains an open area of research for which the Community Simulation Model (CoSMo) offers novel approaches. The grassland model ModVege was first parameterised based on a functional vegetation typology, in which types “A” and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2022-10, Vol.12 (10), p.2468
Hauptverfasser: Piseddu, Francesca, Martin, Raphaël, Movedi, Ermes, Louault, Frédérique, Confalonieri, Roberto, Bellocchi, Gianni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simulating the dynamics of plant species or types in grassland communities remains an open area of research for which the Community Simulation Model (CoSMo) offers novel approaches. The grassland model ModVege was first parameterised based on a functional vegetation typology, in which types “A” and “B” include fast-growing grass species with a phenology-dependent nutrient-capture strategy inherent to fertile grasslands, while the nutrient conservation strategy and late flowering characterise the other types as “b”. ModVege was then coupled to the CoSMo rule set to dynamically simulate the relative abundance of plant functional types or individual species, assessed across fertilised and unfertilised, abandoned and mown conditions in a grassland site of the Massif Central of France. While for the simulation of aboveground biomass, model performance is not unambiguously linked to explicit consideration of plant diversity, the simulation of relative abundance for the whole community is satisfactory (relative root mean square error of ~13–25% when simulating functional types and ~28–52% when simulating species). This study extends previous studies by coupling CoSMo, for the first time, to a grassland-specific model and applying it to conditions (long-term observations, extended number of plant species, absence of fertilisation, frequent mowing and abandonment) never investigated before.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy12102468