Emergent collective organization of bone cells in complex curvature fields

Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-03, Vol.14 (1), p.855-855, Article 855
Hauptverfasser: Callens, Sebastien J. P., Fan, Daniel, van Hengel, Ingmar A. J., Minneboo, Michelle, Díaz-Payno, Pedro J., Stevens, Molly M., Fratila-Apachitei, Lidy E., Zadpoor, Amir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications. It remains unclear how cells respond to complex extracellular geometries at the mesoscale. Here, the authors study the organization of bone cells in landscapes with varying curvatures, observing a preference for local concavities, multicellular bridging, and collective stress fiber orientation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-36436-w