Technical Evaluation Method for Physical Property Changes due to Environmental Degradation of Grout-Injection Repair Materials for Water-Leakage Cracks

Leakage in below-grade concrete structures are repaired using various types of grout-injection materials, but the selection of optimal material types with a consideration of the environmental degradation factors are not conducted. Different degradation factors can act on the waterproofing membranes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-05, Vol.9 (9), p.1740
Hauptverfasser: Jiang, Bo, Oh, Kyu-hwan, Kim, Soo-Yeon, He, Xingyang, Oh, Sang-keun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leakage in below-grade concrete structures are repaired using various types of grout-injection materials, but the selection of optimal material types with a consideration of the environmental degradation factors are not conducted. Different degradation factors can act on the waterproofing membranes or grout-injection materials simultaneously. Especially in the early stages of installation, the injected grout materials in the cracks for leakage repair or for reforming damaged waterproofing layers are subject to complex forms of degradation factors. In such cases, physical property changes to the materials can reduce the waterproofing performance of the grout-injection materials. In this study, a technical evaluation regime is proposed for selecting the optimal repair material to be used in underground concrete structure leakage cracks. In this study, six environmental degradation factors (thermal stress, chemical corrosion, erosion due to ground water flow, hydrostatic pressure, substrate movement, and humidity on concrete surface) are identified. Corresponding evaluation methods based on the ISO TS 16774 test method series were used for each factor to assess the performance evaluation of four different types of grout-injection materials (acrylic resin, epoxy resin, polyurethane foam, and synthetic polymerized rubber gel). Based on the test results, a new comprehensive evaluation regime is presented that allows a quantitative performance comparison between each type of grout-injection material.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9091740