Breast Cancer with Increased Drug Resistance, Invasion Ability, and Cancer Stem Cell Properties through Metabolism Reprogramming
Breast cancer is a heterogeneous disease, and the survival rate of patients with breast cancer strongly depends on their stage and clinicopathological features. Chemoradiation therapy is commonly employed to improve the survivability of patients with advanced breast cancer. However, the treatment pr...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-10, Vol.23 (21), p.12875 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer is a heterogeneous disease, and the survival rate of patients with breast cancer strongly depends on their stage and clinicopathological features. Chemoradiation therapy is commonly employed to improve the survivability of patients with advanced breast cancer. However, the treatment process is often accompanied by the development of drug resistance, which eventually leads to treatment failure. Metabolism reprogramming has been recognized as a mechanism of breast cancer resistance. In this study, we established a doxorubicin-resistant MCF-7 (MCF-7-D500) cell line through a series of long-term doxorubicin in vitro treatments. Our data revealed that MCF-7-D500 cells exhibited increased multiple-drug resistance, cancer stemness, and invasiveness compared with parental cells. We analyzed the metabolic profiles of MCF-7 and MCF-7-D500 cells through liquid chromatography−mass spectrometry. We observed significant changes in 25 metabolites, of which, 21 exhibited increased levels (>1.5-fold change and p < 0.05) and 4 exhibited decreased levels ( |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms232112875 |