Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate
Incorporation of mismatched nucleotides during DNA replication or repair leads to transition or transversion mutations and is considered as a predominant source of base substitution mutagenesis in cancer cells. Watson-Crick like dG:dT base pairing is considered to be an important source of genome in...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-10, Vol.9 (1), p.4213-4, Article 4213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Incorporation of mismatched nucleotides during DNA replication or repair leads to transition or transversion mutations and is considered as a predominant source of base substitution mutagenesis in cancer cells. Watson-Crick like dG:dT base pairing is considered to be an important source of genome instability. Here we show that DNA polymerase (pol) μ insertion of 7,8-dihydro-8′-oxo-dGTP (8-oxodGTP) or deoxyguanosine triphosphate (dGTP) into a model double-strand break DNA repair substrate with template base T results in efficient ligation by DNA ligase. These results indicate that pol μ-mediated dGTP mismatch insertion opposite template base T coupled with ligation could be a feature of mutation prone nonhomologous end joining during double-strand break repair.
Incorporation of mismatched nucleotides during DNA replication or repair can lead to mutagenesis. Here the authors reveal that DNA ligase can ligate NHEJ intermediates following incorporation of 8-oxodGTP or dGTP opposite T by DNA Polymerase mu (Pol mu) in vitro, which suggests that Pol mu could cause promutagenic mismatches during DSB repair. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-06700-5 |