Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle

Cardiac regeneration involves the generation of new cardiomyocytes from cycling cardiomyocytes. Understanding cell-cycle activity of pre-existing cardiomyocytes provides valuable information to heart repair and regeneration. However, the anatomical locations and in situ dynamics of cycling cardiomyo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-10, Vol.12 (1), p.5784-5784, Article 5784
Hauptverfasser: Liu, Xiuxiu, Pu, Wenjuan, He, Lingjuan, Li, Yan, Zhao, Huan, Li, Yi, Liu, Kuo, Huang, Xiuzhen, Weng, Wendong, Wang, Qing-Dong, Shen, Linghong, Zhong, Tao, Sun, Kun, Ardehali, Reza, He, Ben, Zhou, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiac regeneration involves the generation of new cardiomyocytes from cycling cardiomyocytes. Understanding cell-cycle activity of pre-existing cardiomyocytes provides valuable information to heart repair and regeneration. However, the anatomical locations and in situ dynamics of cycling cardiomyocytes remain unclear. Here we develop a genetic approach for a temporally seamless recording of cardiomyocyte-specific cell-cycle activity in vivo. We find that the majority of cycling cardiomyocytes are positioned in the subendocardial muscle of the left ventricle, especially in the papillary muscles. Clonal analysis revealed that a subset of cycling cardiomyocytes have undergone cell division. Myocardial infarction and cardiac pressure overload induce regional patterns of cycling cardiomyocytes. Mechanistically, cardiomyocyte cell cycle activity requires the Hippo pathway effector YAP. These genetic fate-mapping studies advance our basic understanding of cardiomyocyte cell cycle activity and generation in cardiac homeostasis, repair, and regeneration. The adult mammalian heart exhibits stubbornly low levels of cardiomyocyte proliferation, leading to high morbidity after injury or heart attack. Here the authors develop an approach for tracking cardiomyocyte cell cycling and show that the majority are located adjacent to the endocardium.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25933-5