A basis of resolutive sets for the heat equation: an elementary construction
By an easy “trick” taken from the caloric polynomial theory, we prove the existence of a basis of the Euclidean topology whose elements are resolutive sets of the heat equation. This result can be used to construct, with a very elementary approach, the Perron solution of the caloric Dirichlet proble...
Gespeichert in:
Veröffentlicht in: | Bruno Pini mathematical analysis Seminar 2022-01, Vol.13 (1), p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By an easy “trick” taken from the caloric polynomial theory, we prove the existence of a basis of the Euclidean topology whose elements are resolutive sets of the heat equation. This result can be used to construct, with a very elementary approach, the Perron solution of the caloric Dirichlet problem on arbitrary bounded open subsets of the Euclidean space-time. |
---|---|
ISSN: | 2240-2829 |
DOI: | 10.6092/issn.2240-2829/16154 |