A basis of resolutive sets for the heat equation: an elementary construction

By an easy “trick” taken from the caloric polynomial theory, we prove the existence of a basis of the Euclidean topology whose elements are resolutive sets of the heat equation. This result can be used to construct, with a very elementary approach, the Perron solution of the caloric Dirichlet proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bruno Pini mathematical analysis Seminar 2022-01, Vol.13 (1), p.1-8
Hauptverfasser: Alessia E. Kogoj, Ermanno Lanconelli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By an easy “trick” taken from the caloric polynomial theory, we prove the existence of a basis of the Euclidean topology whose elements are resolutive sets of the heat equation. This result can be used to construct, with a very elementary approach, the Perron solution of the caloric Dirichlet problem on arbitrary bounded open subsets of the Euclidean space-time.
ISSN:2240-2829
DOI:10.6092/issn.2240-2829/16154