Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array
In this paper, we proposed a newly modified cuckoo search (MCS) algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL) and/or nulls control. The basi...
Gespeichert in:
Veröffentlicht in: | Radioengineering 2012-09, Vol.21 (3), p.865-874 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we proposed a newly modified cuckoo search (MCS) algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL) and/or nulls control. The basic cuckoo search (CS) algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA) techniques include particle swarm optimization (PSO) and genetic algorithms (GA). |
---|---|
ISSN: | 1210-2512 |