Entropy-Driven Mechanisms between Disulfide-Bond Formation Protein A (DsbA) and B (DsbB) in Escherichia coli
A disulfide-bond formation system for nascent proteins in the Escherichia coli periplasm contains efficient electron transfer systems for the catalysis of oxidation. This electrochemical system has interesting implications in vivo. Disulfide bonds are formed by disulfide-bond formation protein A (Ds...
Gespeichert in:
Veröffentlicht in: | ACS omega 2019-05, Vol.4 (5), p.8341-8349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A disulfide-bond formation system for nascent proteins in the Escherichia coli periplasm contains efficient electron transfer systems for the catalysis of oxidation. This electrochemical system has interesting implications in vivo. Disulfide bonds are formed by disulfide-bond formation protein A (DsbA), which contains two reactive cysteines. DsbA is reoxidized by a membrane protein, disulfide-bond formation protein B (DsbB), which has four catalytic cysteines. The oxidation of DsbA by DsbB seems energetically unfavorable on the basis of the redox potential. The oxidizing power of ubiquinone (UQ), which endogenously binds with DsbB, is believed to promote this reaction. However, using UQ-deficient DsbB, it was found that the oxidation of DsbA by DsbB proceeds independently of UQ. Thus, the reaction mechanism of DsbA oxidation by DsbB is under debate. In this study, we used the quartz crystal microbalance technique, which detects the intermediate complex between DsbA and DsbB during DsbA oxidation as a change in mass, to obtain kinetic parameters of DsbA oxidation under both the oxidized and reduced states of UQ at acidic and basic pH. In addition, we utilized sodium dodecyl sulfate polyacrylamide gel electrophoresis mobility shift assay technique to determine the pK a of the cysteine thiol groups in DsbA and DsbB. We found that DsbA oxidation proceeded independently of UQ and was greatly affected in kinetics by the shuffling of electrons among the four cysteine residues in DsbB, regardless of pH. These results suggest that DsbA oxidation is driven in an entropy-dependent manner, in which the electron-delocalized intermediate complex is stabilized by preventing a reverse reaction. These findings could contribute to the design of bio-inspired electrochemical systems for industrial applications. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.9b00474 |