Accurate Signal Conditioning for Pulsed-Current Synchronous Measurements

This paper describes a compact electronic system employing a synchronous demodulation measurement method for the acquisition of pulsed-current signals. The fabricated prototype shows superior performance in terms of signal-to-noise ratio in comparison to conventional instrumentation performing free-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (14), p.5360
Hauptverfasser: Pettinato, Sara, Girolami, Marco, Rossi, Maria Cristina, Salvatori, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a compact electronic system employing a synchronous demodulation measurement method for the acquisition of pulsed-current signals. The fabricated prototype shows superior performance in terms of signal-to-noise ratio in comparison to conventional instrumentation performing free-running measurements, especially when extremely narrow pulses are concerned. It shows a reading error around 0.1% independently of the signal duty cycle (D) in the investigated D = 10−4−10−3 range. Conversely, high-precision electrometers display reading errors as high as 30% for a D = 10−4, which reduces to less than 1% only for D > 3 × 10−3. Field tests demonstrate that the developed front-end/readout electronics is particularly effective when coupled to dosimeters irradiated with the X-rays sourced by a medical linear accelerator. Therefore, it may surely be exploited for the real-time monitoring of the dosimeter output current, as required in modern radiotherapy techniques employing ultra-narrow pulses of high-energy photons or nuclear particles.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145360