Genome Mining Associated with Analysis of Structure, Antioxidant Activity Reveals the Potential Production of Levan-Rich Exopolysaccharides by Food-Derived Bacillus velezensis VTX20

Exopolysaccharides (EPSs) produced by Bacillus species have recently emerged as promising commercial antioxidants in various industries, such as pharmaceutics and biomedicine. However, little is known about EPS production and function from Bacillus velezensis so far. In the present study, the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (15), p.7055
Hauptverfasser: Vu, Thi Hanh Nguyen, Quach, Ngoc Tung, Nguyen, Ngoc Anh, Nguyen, Huyen Trang, Ngo, Cao Cuong, Nguyen, Tien Dat, Ho, Phu-Ha, Hoang, Ha, Chu, Hoang Ha, Phi, Quyet-Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exopolysaccharides (EPSs) produced by Bacillus species have recently emerged as promising commercial antioxidants in various industries, such as pharmaceutics and biomedicine. However, little is known about EPS production and function from Bacillus velezensis so far. In the present study, the effect of sugar sources on EPS production by B. velezensis VTX20 and the genetic biosynthesis, characteristics, and antioxidant activity of the resulting EPS were evaluated. The strain VTX20 produced the maximum EPS yield of 75.5 ± 4.8 g/L from an initial 200 g/L of sucrose after a 48-h cultivation. Through genomic analysis, ls-levB operon was found, for the first time, to be responsible for the levan-type EPS production in B. velezensis. Biochemical and structural characterization further confirmed the majority of levan, followed by an extremely low level of dextran biopolymer. The water solubility index and water holding capacity of the EPSs were 81.9 ± 3.4% and 100.2 ± 3.4%, respectively. In vitro antioxidant activity analyses showed strong scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical values of 40.1–64.0% and 16.0–40%, respectively. These findings shed light on the EPS biosynthesis of B. velezensis at both structural and genetic levels and the potential application of EPS as a natural antioxidant for pharmaceutical and biomedical industries.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11157055