Enhanced DC Building Distribution Performance Using a Modular Grid-Tied Converter Design
This work quantifies the techno-economic performance of AC and DC residential building distribution. Two methods, utilising software and hardware configurations, are showcased to improve DC distribution: (i) a novel rule-based battery dual-objective operation (DOO) and (ii) a modular Master/Slave de...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024, Vol.17 (13), p.3105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work quantifies the techno-economic performance of AC and DC residential building distribution. Two methods, utilising software and hardware configurations, are showcased to improve DC distribution: (i) a novel rule-based battery dual-objective operation (DOO) and (ii) a modular Master/Slave design of the grid-tied converter (GC). Both methods use the GC’s load-dependent efficiency characteristic, eliminating partial-load operation and enhancing energy efficiency. The work uses measured annual PV and load data to evaluate the performance of the methods compared to AC and DC references. The techno-economic analysis includes the annual net electricity bill and monetised battery degradation. The results show that the DOO eliminates GC partial-load operation at the cost of increased battery usage, resulting in marginal net savings. In contrast, the modular converter design significantly reduces losses: −157 kWh/a (−31%) and −121 kWh/a (−26%), respectively, relative to the DC and AC references. For a parametric sweep of electricity price and discount rate, the Lifetime Operating Cost (LOC) comparison shows savings from DC of up to USD 575 compared to AC. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17133105 |