Organo–organic and organo–mineral interfaces in soil at the nanometer scale

The capacity of soil as a carbon (C) sink is mediated by interactions between organic matter and mineral phases. However, previously proposed layered accumulation of organic matter within aggregate organo–mineral microstructures has not yet been confirmed by direct visualization at the necessary nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-11, Vol.11 (1), p.6103-6103, Article 6103
Hauptverfasser: Possinger, Angela R., Zachman, Michael J., Enders, Akio, Levin, Barnaby D. A., Muller, David A., Kourkoutis, Lena F., Lehmann, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The capacity of soil as a carbon (C) sink is mediated by interactions between organic matter and mineral phases. However, previously proposed layered accumulation of organic matter within aggregate organo–mineral microstructures has not yet been confirmed by direct visualization at the necessary nanometer-scale spatial resolution. Here, we identify disordered micrometer-size organic phases rather than previously reported ordered gradients in C functional groups. Using cryo-electron microscopy with electron energy loss spectroscopy (EELS), we show organo–organic interfaces in contrast to exclusively organo–mineral interfaces. Single-digit nanometer-size layers of C forms were detected at the organo–organic interface, showing alkyl C and nitrogen (N) enrichment (by 4 and 7%, respectively). At the organo–mineral interface, 88% (72–92%) and 33% (16–53%) enrichment of N and oxidized C, respectively, indicate different stabilization processes than at organo–organic interfaces. However, N enrichment at both interface types points towards the importance of N-rich residues for greater C sequestration. Historically it has been maintained that soil organic carbon (SOC) is stabilized through interactions with mineral interfaces. Here the authors use cryo-electron microscopy and spectroscopy to show that SOC interactions can also occur between organic forms in patchy, disordered structure.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-19792-9