Geometric Shrinkage Priors for Kählerian Signal Filters

We construct geometric shrinkage priors for Kählerian signal filters. Based on the characteristics of Kähler manifolds, an efficient and robust algorithm for finding superharmonic priors which outperform the Jeffreys prior is introduced. Several ansätze for the Bayesian predictive priors are also su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2015-03, Vol.17 (3), p.1347-1357
Hauptverfasser: Choi, Jaehyung, Mullhaupt, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct geometric shrinkage priors for Kählerian signal filters. Based on the characteristics of Kähler manifolds, an efficient and robust algorithm for finding superharmonic priors which outperform the Jeffreys prior is introduced. Several ansätze for the Bayesian predictive priors are also suggested. In particular, the ansätze related to Kähler potential are geometrically intrinsic priors to the information manifold of which the geometry is derived from the potential. The implication of the algorithm to time series models is also provided.
ISSN:1099-4300
1099-4300
DOI:10.3390/e17031347