Joint Regional Waveform, First-Motion Polarity, and Surface Displacement Moment Tensor Inversion of the 3 September 2017 North Korean Nuclear Test

The 3 September 2017 Mw 5.2 North Korean underground nuclear test (DPRK2017) is the largest man-made explosion with surface displacements observed by Synthetic Aperture Radar (SAR) and showed as much as 3.5 m of horizontal permanent deformation. Although regional distance waveform-based seismic mome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Seismic record 2021-07, Vol.1 (2), p.107-116
Hauptverfasser: Chi-Durán, Rodrigo, Dreger, Douglas S., Rodgers, Arthur J., Nayak, Avinash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 3 September 2017 Mw 5.2 North Korean underground nuclear test (DPRK2017) is the largest man-made explosion with surface displacements observed by Synthetic Aperture Radar (SAR) and showed as much as 3.5 m of horizontal permanent deformation. Although regional distance waveform-based seismic moment tensor (MT) inversion methods successfully identify this event as an explosion, the inverted solutions do not fit the SAR displacement field well. To better constrain the source, we developed an MT source-type inversion method that incorporates surface ground deformation (accounting for free-surface topography), regional seismic waveforms, and first-motion polarities. We applied the source-type inversion over a grid of possible source locations to find the best-fitting location, depth, and point-source MT for the event. Our best-fitting MT solution achieves ∼70% horizontal geodetic fit, ∼80% waveform fit, and 100% fit in the first-motion polarities. The joint inversion narrows the range of acceptable source types improving discrimination, and reduces the uncertainty in scalar moment and estimated yield. The method is transportable and can be applied to other types of events that may have measurable geodetic signals such as underground mine collapses and volcanic events.
ISSN:2694-4006
2694-4006
DOI:10.1785/0320210022